On approximation and error estimate  for  Poisson equation in Banach space

Authors

  • Devendra Kumar Department of Mathematics, University of Rajasthan, Jaipur-302004, India

Keywords:

Poisson equation, Regularity, Convergence rate, Ill-posed problem

Abstract

This article investigates the Poisson equation inverse source problem. This is an ill-posed, i.e. a small change in the data will lead to a very large change in the solution. Therefore, a regularized solution is necessary. In this work, we construct the regularized solution by truncation method. We also investigate the convergent rate between the regularized solution and the sought solution in \(L^j(0,\pi)\).  

References

[1] Cannon J.R. Determination of an unknown heat source from overspecified boundary data. SIAM J. Numer. Anal. 5:275–286, 1968.

[2] Alifanov O.M. Derivation of formulas for the gradient of the error in the iterative solution of inverse problems of heat conduction I. Determination of the gradient in terms of the Green’s function. Inzh. Fiz. Zh. 52(3):476–485, 1987.

[3] Ohe T., Ohnaka K. A precise estimation method for locations in an inverse logarithmic potential problem for point mass models. Appl. Math. Model. 18(8):446–452, 1994.

[4] Nara T., Ando S. A projective method for an inverse source problem of the Poisson equation. Inverse Probl. 19(2):355–369, 2003.

[5] Hon Y.C., Li M., Melnikov Y.A. Inverse source identification by Green’s function. Eng. Anal. Bound. Elem. 34(4):352–358, 2010.

[6] Wen J., Huang L.M., Liu Z.X. A modified quasi-reversibility method for inverse source problem of Poisson equation. Inverse Problems in Science and Engineering 29(12):2098–2109, 2021.

[7] Cheney M., Isaacson D., Newell J.C. Electrical impedance tomography. SIAM Rev. 41(1):85–101, 1999.

[8] Hämäläinen M., Hari R., Ilmoniemi R.J., Knuutila J., Lounasmaa O.V. Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2):413–497, 1993.

[9] Badia A.E., Ha-Duong T. An inverse source problem in potential analysis. Inverse Problems 16(3):651–663, 2000.

[10] Baratchart L., Abda A.B., Hassen F.B., Leblond J. Recovery of pointwise sources or small inclusions in 2D domains and rational approximation. Inverse Problems 21(1):51–74, 2005.

[11] Bubnov B.A., Erokhin G.N. Inverse and ill-posed sources problems. Vol. 9, VSP, 1997.

[12] Nguyen H.T., Nane E. Inverse source problem for time-fractional diffusion with discrete random noise. Statist. Probab. Lett. 113:38–45, 2016.

[13] Yang F. The truncation method for identifying an unknown source in the Poisson equation. [Không rõ thông tin tạp chí/năm].

[14] Hanke M., Rundell W. On rational approximation methods for inverse source problems. Inverse Probl. Imaging 5(1):185–202, 2011.

[15] He B., Musha T., Okamoto Y., Homma S., Nakajima Y., Sato T. Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans. Biomed. Eng. BME-34(6):406–414, 1987.

[16] Hettlich F., Rundell W. Iterative methods for the reconstruction of an inverse potential problem. Inverse Problems 12(3):251–266, 1996.

[17] Hon Y.C., Li M., Melnikov Y.A. Inverse source identification by Green’s function. Eng. Anal. Bound. Elem. 34(4):352–358, 2010.

[18] Isakov V. Inverse Source Problems. No. 34, American Mathematical Society, 1990.

[19] Kavanagh R.N., Darcey T.M., Lehmann D., Fender D.H. Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Eng. BME-25(5):421–429, 1978.

[20] Ling L., Hon Y.C., Yamamoto M. Inverse source identification for Poisson equation. Inverse Problems in Science and Engineering 13(4):433–447, 2005.

[21] Morozov V. Methods of Solving Incorrectly Posed Problems. Springer-Verlag, New York, 1984.

[22] Nenonen J., Katila T., Leinio M., Montonen J., Makijarvi M., Siltanen P. Magnetocardiographic functional localization using current multipole models. IEEE Trans. Biomed. Eng. 38(7):648–657, 1991.

[23] Ohnaka K., Uosaki K. Boundary element approach for identification of point forces of distributed parameter systems. Int. J. Control 49(1):119–127, 1989.

[24] Tuan N.H., Thach T.N., Zhou Y. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evol. Equ. Control Theory 9(2):561, 2020.

[25] Tuan N.H., Baleanu D., Thach T.N., O’Regan D., Can N.H. Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data. J. Comput. Appl. Math. 376:112883, 2020.

[26] Triet N.A., Binh T.T., Phuong N.D., Baleanu D., Can N.H. Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements. Math. Methods Appl. Sci. 44(6):5188–5209, 2021.

[27] Triet N.A., Tuan N.H., Phuong N.D., O’Regan D. On the inverse problem for nonlinear strongly damped wave equations with discrete random noise. Int. J. Nonlinear Sci. Numer. Simul. 23(3-4):365–383, 2022.

[28] Cannon J.R., Duchateau P. Structural identification of an unknown source term in a heat equation. Inverse Probl. 14:535–551, 1998.

[29] Li G.S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Appl. Math. Comput. 173:566–581, 2006.

[30] Yi Z., Murio D.A. Source term identification in 1-D IHCP. Comput. Math. Appl. 47:1921–1933, 2004.

[31] Yan L., Yang F.L., Fu C.L. A meshless method for solving an inverse spacewise-dependent heat source problem. J. Comput. Phys. 228:123–136, 2009.

[32] Farcas A., Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. J. Eng. Math. 54:375–388, 2006.

[33] Yan L., Fu C.L., Yang F.L. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 32:216–222, 2008.

[34] Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York, 1996.

[35] Elden L., Berntsson F., Reginska T. Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput. 21(6):2187–2205, 2000.

[36] Xiong X.T., Fu C.L., Li H.F. Fourier regularization method of a sideways heat equation for determining surface heat flux. J. Math. Anal. Appl. 317:331–348, 2006.

[37] Fu C.L., Xiong X.T., Qian Z. Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331:472–480, 2007.

[38] Qian Z., Fu C.L., Xiong X.T., Wei T. Fourier truncation method for high order numerical derivatives. Appl. Math. Comput. 181:940–948, 2006.

[39] Tuan N.H., Caraballo T. On initial and terminal value problems for fractional nonclassical diffusion equations. Proc. Amer. Math. Soc. 149(1):143–161, 2021.

[40] Yang F., Fu C.L. The modified regularization method for identifying the unknown source on Poisson equation. Appl. Math. Model. 36(2):756–763, 2012.

[41] Qian A.L., Mao J.F. Optimal error bound and a generalized Tikhonov regularization method for identifying an unknown source in the Poisson equation. Int. J. Wavelets Multiresolut. Inf. Process. 12(1):1450004, 2014.

[42] Zhao Z.Y., Meng Z.H., You L. Identifying an unknown source in the Poisson equation by the method of Tikhonov regularization in Hilbert scales. Appl. Math. Model. 38:4686–4693, 2014.

[43] Li Z., Zhao Z.H., Meng Z.H., et al. Identifying an unknown source in the Poisson equation with a super order regularization method. Int. J. Comput. Methods 17(7):1950030, 2020.

[44] Denche M., Bessila K. A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301(2):419–426, 2005.

[45] Yang F., Zhang M., Li X.X. A quasi-boundary value regularization method for identifying an unknown source in the Poisson equation. J. Inequal. Appl. 2004(1):117, 2004.

[46] Mel′nikova I.V. Regularization of ill-posed differential problems. Sibirsk. Mat. Zh. 33(2):125–134, 1992.

[47] Li X.X., Guo H.Z., Wan S.M. Inverse source identification by the modified regularization method on Poisson equation. J. Appl. Math. 2012(2):13, 2012.

[48] Yang F. The truncation method for identifying an unknown source in the Poisson equation. Appl. Math. Comput. 217(22):9334–9339, 2011.

Additional Files

Published

16-08-2024

Data Availability Statement

Not applicable

Issue

Section

Research Article

How to Cite

On approximation and error estimate  for  Poisson equation in Banach space. (2024). Letters on Applied and Pure Mathematics, 2(1), 35-41. https://lapmjournal.com/index.php/lapm/article/view/v2n1a27

Similar Articles

You may also start an advanced similarity search for this article.