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1 Introduction

The goal of this paper is to provide a novel theoretical analysis based on a preconditioning
approach developed by Vulanović and Nhan [17] for the one-dimensional singularly perturbed
convection-diffusion problem,

Lu := −εu′′ − b(x)u′ + c(x)u = f (x), x ∈ (0, 1), u(0) = u(1) = 0, (1.1)
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where ε is a positive perturbation parameter, 0 < ε ≤ 1. We assume that the functions b, c, and
f are sufficiently smooth, and that

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ I := [0, 1].

Under these assumptions, the boundary value problem (1.1) has a unique solution, u ∈ C2(I).

When ε is small, the problem (1.1) is convection-dominated and the solution u typically has
an exponential boundary layer near x = 0. In the layer, the kth derivative of the solution behaves
like O(ε−k). Because of this, singular perturbation problems require special numerical methods
that are parameter-robust. Their goal is to achieve ε-uniform accuracy (ε-uniform convergence).
The use of layer-adapted meshes, either Bakhvalov-type meshes or Shishkin-type meshes, is
one of the most frequently used approaches to achieve the goal. The class of Bakhvalov-type
meshes shares the same elegant property of its original mesh introduced by Bakhvalov [1] in
1969. That is, the Bakhvalov-type meshes are created by smooth mesh-generating functions.
This feature distinguishes them from the Shishkin-type meshes which can be generated by
piecewise differentiable functions. Because of this, Shishkin-type meshes are often simpler,
but as a trade-off, their convergence rate is usually sub-optimal when compared to that of the
Bakhvalov-type meshes.

Even when Bakhvalov-type or Shishkin-type meshes are used, the error analysis of finite-
difference methods for the problem (1.1) is still challenging. The main problem is that, in
contrast to the reaction-diffusion problems, ε-uniform convergence cannot be proved using
the classical principle “ε-uniform stability and ε-uniform consistency imply ε-uniform conver-
gence.” This is because ε-uniform consistency is absent in the case of convection-diffusion
problems of type (1.1). For instance, when (1.1) is discretized by the upwind scheme on the
Shishkin mesh, the consistency (truncation) errors behave like O(ε−1N−1 ln N) where N is the
discretization parameter (cf. [10, 17] for numerical observations of this phenomenon). This is
why special techniques are devised to prove ε-uniform convergence for finite-difference schemes
discretizing (1.1) on layer-adapted meshes. These include the hybrid-stability approach [5] and
truncation-error and barrier functions [12, 13]. A relatively recent method of proof, introduced
by Vulanović and Nhan [17], is to use the preconditioning technique. This idea is extended
further to hybrid higher-order finite-difference schemes [10, 18] and to a method that uses a
very special decomposition of the solution [19]. Note that as mentioned in our papers [18, 19],
the preconditioning technique is the only analysis that works for more complicated schemes.

The meshes used in the above papers are the Shishkin mesh and its modifications. The
result closest to a preconditioning-based proof for a Bakhvalov-type mesh is presented in [14].
The mesh considered there is the Bakhvalov-Shishkin mesh [4] that uses the explicit Shishkin
transition point between the fine part of the mesh in the layer and the coarse part outsied the
layer. This mesh is not generated by a smooth function like the original Bakhvalov mesh. By
contrast, the goal of this article is to show that it is possible to generalize the preconditioning-
driven analysis to a Bakhvalov-type mesh defined by a smooth mesh-generating function. The
mesh we consider is the simplest one in the Bakhvalov mesh generalization by Vulanović [15];
we shall call it the Vulanović-Bakhvalov mesh. Because the preconditioning technique has
proven its capability to handle more sophisticated schemes, our result might be employed to
analyze more complicated higher-order methods, similarly to Vulanović and Nhan [18, 19] but
on Bakhvalov-type meshes.

In the next section, we introduce the solution decomposition, the discrete problem, as well
as the condition number estimates for an un-preconditioned discrete system. We then describe
the Vulanović-Bakhvalov mesh in Section 3. A carefully selected preconditioner to scale the
discrete system is presented in Section 4 and used to obtain ε-uniform stability. Finally, the
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preconditioned consistency error is analyzed and the uniform convergence result is derived in
Section 5, where we also present results of a numerical test.

2 The solution decomposition, the discrete problem, and the condition number
estimate

The solution u can be decomposed into the smooth and boundary-layer parts. We present here
Linß’s [4, Theorem 3.48] version of such a decomposition:

u(x) = s(x) + y(x), (2.1)

|s(k)(x)| ≤ C
(

1 + ε2−k
)

, |y(k)(x)| ≤ Cε−ke−βx/ε, (2.2)

x ∈ I, k = 0, 1, 2, 3.

Above and throughout the paper, C denotes a generic positive constant which is independent
of ε. For the construction of the function s, see [4], since the details are not of interest here. As
for y, it is important to note that it solves the problem

Ly(x) = 0, x ∈ (0, 1), y(0) = −s(0), y(1) = 0,

with a homogeneous differential equation. We shall use this fact later on in this paper.
We first define a finite-difference discretization of the problem (1.1) on a general mesh IN

with mesh points xi, i = 0, 1, . . . , N, such that 0 = x0 < x1 < · · · < xN = 1. Throughout the rest
of the paper, the constants C are also independent of N.

Let hi = xi − xi−1, i = 1, 2, . . . , N, and h̄i = (hi + hi+1)/2, i = 1, 2, . . . , N − 1. Mesh functions
on IN are denoted by WN , UN , etc. If g is a function defined on I, we write gi instead of g(xi)
and gN for the corresponding mesh function. Any mesh function WN is identified with an
(N + 1)-dimensional column vector, WN = [WN

0 , WN
1 , . . . , WN

N ]T, and its maximum norm is
given by ∥∥∥WN

∥∥∥ = max
0≤i≤N

|WN
i |.

For the matrix norm, which we also denote by ∥ · ∥, we take the norm subordinate to the above
maximum vector norm.

We discretize the problem (1.1) on IN using the upwind finite-difference scheme:

UN
0 = 0,

LNUN
i := −εD′′UN

i − biD′UN
i + ciUN

i = fi, i = 1, 2, . . . , N − 1, (2.3)

UN
N = 0,

where

D′′WN
i =

1
h̄i

(
WN

i+1 − WN
i

hi+1
−

WN
i − WN

i−1

hi

)
and

D′WN
i =

WN
i+1 − WN

i

hi+1
.

The linear system (2.3) can be written down in matrix form,

ANUN = f̂ N , (2.4)
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where AN = [aij] is a tridiagonal matrix with a00 = 1 and aNN = 1 being the only nonzero
elements in the 0th and Nth rows, respectively, and where f̂ N = [0, f1, f2, . . . , fN−1, 0]T.

It is easy to see that AN is an L-matrix, i.e., aii > 0 and aij ≤ 0 if i ̸= j, for all i, j = 0, 1, . . . , N.
The matrix AN is also inverse monotone, which means that it is non-singular and that A−1

N ≥ 0
(inequalities involving matrices and vectors should be understood component-wise), and
therefore an M-matrix (inverse monotone L-matrix). This can be proved using the following
M-criterion, see [2] for instance.

Theorem 2.1. Let A be an L-matrix and let there exist a vector w such that w > 0 and Aw ≥ γ for
some positive constant γ. A is then an M-matrix and it holds that ∥A−1∥ ≤ γ−1∥w∥.

To see that AN is an M-matrix, just set wi = 2 − xi, i = 0, 1, . . . , N in Theorem 2.1 to get that
ANw ≥ min{1, β}. This also implies that the discrete problem (2.4) is stable uniformly in ε,

∥A−1
N ∥ ≤ 2

min{1, β} ≤ C. (2.5)

Of course, the system (2.4) has a unique solution UN .

3 A Bakhvalov-type mesh

A generalization of the Bakhvalov mesh [1] to a class of Bakhvalov-type meshes can be found
in [15]. Here we take one of the Bakhvalov-type meshes from [15] for the discretization mesh IN .
We refer to this mesh as Vulanović-Bakhvalov mesh (VB-mesh). The points of the VB-mesh are
generated by the function λ in the sense that xi = λ(ti), where ti = i/N. The mesh-generating
function λ is defined as follows:

λ(t) =

{
ψ(t), t ∈ [0, α],
ψ(α) + ψ′(α)(t − α), t ∈ [α, 1],

(3.1)

with 0 < q < 1 and ψ = aεϕ, where

ϕ(t) =
t

q − t
=

q
q − t

− 1, t ∈ [0, α].

On the interval [α, 1], λ is the tangent line from the point (1, 1) to ψ, touching ψ at (α, ψ(α)).
The point α can be determined from the equation

ψ(α) + ψ′(α)(1 − α) = 1.

Since ϕ′(t) = q/(q − t)2, the above equation reduces to a quadratic one,

aεα(q − α) + aεq(1 − α) = (q − α)2,

which is easy to solve for α:

α =
q −

√
aεq(1 − q + aε)

1 + aε
.

We have to assume that aε < q (which is equivalent to ψ′(0) < 1) and then α > 0. Note also
that α < q and

q − α = ζ
√

ε, ζ ≤ C,
1
ζ
≤ C. (3.2)
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Let J be the index such that tJ−1 < α ≤ tJ . Starting from the mesh point xJ , the mesh is uniform,
with step size H. However, xJ behaves differently from the transition point of the Shishkin
mesh because

xJ ≥ ψ(α) =
aα

ζ

√
ε.

We note that the transition point ψ(α) is different also from the Bakhvalov-Shishkin of Vulanović-
Shishkin meshes in the sense of [8].

We now give the estimate for the condition number of AN when the discrete problem (2.3)
is formed on the VB-mesh as described above. The condition number is

κ(AN) := ∥A−1
N ∥∥AN∥.

We estimate the upper bound for ∥AN∥ by examining the entries of the matrix AN directly,

∥AN∥ ≤ C
N2

ε
.

Combining this with (2.5), we get the following result.

Theorem 3.1. The condition number of AN on the VB-mesh satisfies the following sharp bound:

κ(AN) ≤ C
N2

ε
.

4 Conditioning

Let M = diag (m0, m1, . . . , mN) be a diagonal matrix with the entries

m0 = 1, mi =
h̄i

H
, i = 1, 2, . . . , N − 1, and mN = 1.

In other words,

m0 = 1, mi =
h̄i

H
, i = 1, 2, . . . , J, and mi = 1, i = J + 1, . . . , N. (4.1)

When the system (2.4) is multiplied by M, this is equivalent to multiplying the equations 1, 2,
. . . , J of the discrete problem (2.3) by h̄i/H, i = 1, 2, . . . , J. The modified system is

ÃNUN = M f̃ N , (4.2)

where ÃN = MAN . Let the entries of ÃN be denoted by ãij, the nonzero ones being

li := ãi,i−1 =



− ε

hi H
, 1 ≤ i ≤ J − 1,

− ε

hJ H
, i = J,

− ε

H2 , J + 1 ≤ i ≤ N − 1,

ri := ãi,i+1 =



− ε

hi+1H
− bi h̄i

hi+1H
, 1 ≤ i ≤ J − 1,

− ε

H2 − bi h̄i

H2 , i = J,

− ε

H2 − bi

H
, J + 1 ≤ i ≤ N − 1,
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and

di := ãii =



1, i = 0

−li − ri +
h̄i

H
ci, 1 ≤ i ≤ J,

−li − ri + ci, J + 1 ≤ i ≤ N − 1,

1, i = N.

Unlike the Shishkin mesh, which is piecewise uniform, the VB-mesh is graded in the fine
part. Because of this, it is more difficult to prove the uniform stability of the modified scheme.
This is done in Lemma 4.2 below, but first we need some crucial estimates for the graded mesh
defined by (3.1).

Lemma 4.1. For the mesh-generating function given in (3.1), the following estimates hold true:

ε(hi+1 − hi)

hihi+1
≤ 2

a
, i = 1, 2, . . . , J − 2, (4.3)

and
ε(H − hJ)

hJ H
≤ ζ

√
ε

aq
. (4.4)

Proof. For i ≤ J − 2, we have

hi = xi − xi−1 = aε

(
q

q − ti
− q

q − ti−1

)
=

aεq
N(q − ti−1)(q − ti)

,

hi+1 =
aεq

N(q − ti)(q − ti+1)
,

and
hi+1 − hi =

2aεq
N2(q − ti−1)(q − ti)(q − ti+1)

.

Then (4.3) follows because

ε(hi+1 − hi)

hihi+1
=

2(q − ti)

aq
=

2
a

(
1 − ti

q

)
≤ 2

a
.

The proof of (4.4) is more complicated due to the presence of hJ . First, hJ = γ1 + γ2, where
γ1 = xα − xJ−1, γ2 = xJ − xα, and xα = ψ(α). Since

γ2 = ψ′(α)(tJ − α)

=
aεq

q − α

(
tJ − α

q − α

)
and

γ1 = aε (ϕ(α)− ϕ (tJ−1))

= aε

(
α

q − α
− tJ−1

q − tJ−1

)
=

aεq
q − α

· α − tJ−1

q − tJ−1
,
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we have

hJ =
aεq

q − α

[
tJ − α

q − α
+

α − tJ−1

q − tJ−1

]
=

aεq
(q − α)2

[
tJ − α +

(q − α)(α − tJ−1)

q − tJ−1

]
=

aεq
ζ2

[
tJ − α +

ζ
√

ε(α − tJ−1)

q − tJ−1

]
.

Moreover,

ψ′(α) =
aεq

(q − α)2 and H = xJ+1 − xJ =
ψ′(α)

N
,

implying that

H =
aεq

N(q − α)2 .

Therefore,

H − hJ =
aεq

q − α

[
1

N(q − α)
− tJ − α

q − α
− α − tJ−1

q − tJ−1

]
=

aεq
q − α

[
α − tJ−1

q − α
− α − tJ−1

q − tJ−1

]
=

aεq
q − α

(α − tJ−1)

[
1

q − α
− 1

q − tJ−1

]
=

aεq
q − α

(α − tJ−1)
α − tJ−1

(q − α)(q − tJ−1)

=
aεq

(q − α)2 · (α − tJ−1)
2

q − tJ−1
.

We now have

ε
H − hJ

hJ H
=

aε2q
(q − α)2 · (α − tJ−1)

2

q − tJ−1
· q − α

aεq
· 1

tJ−α
q−α +

α−tJ−1
q−tJ−1

· (q − α)2N
aεq

=
(q − α)N

aq
· (α − tJ−1)

2

q − tJ−1
· (q − α)(q − tJ−1)

q
N − α2 + 2αtJ−1 − tJ−1tJ

=
(q − α)2N

aq
· (α − tJ−1)

2

ω
≤ ζ2ε

aqN
· 1

ω
,

where
ω :=

q
N

− α2 + 2αtJ−1 − tJ−1tJ

and where in the last step we used (3.2) and the fact that 0 ≤ α − tJ−1 ≤ 1/N. The denominator
ω can be estimated as follows:

ω =
q
N

− (α − tJ−1)
2 − tJ−1

N

=
ζ
√

ε + α

N
− (α − tJ−1)

2 − tJ−1

N

=
ζ
√

ε

N
+

1
N

(α − tJ−1)− (α − tJ−1)
2

=
ζ
√

ε

N
+ (α − tJ−1) (tJ − α)

≥ ζ
√

ε

N
, since (α − tJ−1) (tJ − α) ≥ 0.
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Therefore,

ε
H − hJ

hJ H
≤ ζ2ε

aqN
· N

ζ
√

ε
=

ζ
√

ε

aq
.

This completes the proof of (4.4).

It is easy to see that ÃN is an L-matrix. The next lemma shows that ÃN is an M-matrix and
that the modified discretization (4.2) is stable uniformly in ε.

Lemma 4.2. Let ε be sufficiently small, independently of N, and let a > 4/β. Then the matrix ÃN of
the system (4.2) satisfies ∥∥∥Ã−1

N

∥∥∥ ≤ C.

Proof. We want to construct a vector v = [v0, v1, . . . , vN ]
T such that

(a) vi ≥ δ, i = 0, 1, . . . , N, where δ is a positive constant independent of both ε and N,
(b) vi ≤ C, i = 0, 1, . . . , N,
(c) σi := livi−1 + divi + rivi+1 ≥ δ, i = 1, 2, . . . , N − 1.

Then, according to the M-criterion,

∥Ã−1
N ∥ ≤ δ−1∥v∥ ≤ C.

The following choice of the vector v is motivated by [7, 9, 17]:

vi =

α − Hi + λ, i ≤ J − 1,

α − Hi +
λ

1 + ρJ
(1 + ρ)J−i, i ≥ J,

where ρJ = βhJ/(2ε), ρ = βH/(2ε), and α and λ are fixed positive constants. Since HN ≤ C,
there exists a constant α such that vi ≥ α − Hi ≥ δ > 0, so the condition (a) is satisfied. Then,
because of vi ≤ α + λ, the condition (b) holds true if we show that λ ≤ C. We do this next as
we verify the condition (c).

When 1 ≤ i ≤ J − 2, we use (4.3) to get

σi = (li + di + ri)vi + li H − ri H

=
h̄i

H
civi −

ε

hi
+

ε

hi+1
+

bi h̄i

hi+1

≥ −
(

ε

hi
− ε

hi+1

)
+

bi

2
+

bihi

2hi+1

= − ε(hi+1 − hi)

hihi+1
+

bi

2
+

bihi

2hi+1

≥ −2
a
+

bi

2
≥ β

2
− 2

a
=: δ > 0.

The constant δ exists because of the assumption a > 4/β.
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For i = J − 1, we have

σJ−1 =
h̄J−1

H
cJ−1vJ−1 + lJ−1H − rJ−1H

+ λlJ−1 + λdJ−1 + rJ−1
λ

1 + ρJ

≥ − ε

hJ−1
+

ε

hJ
+

bJ−1h̄J−1

hJ
− rJ−1

λρJ

1 + ρJ

≥ − ε

hJ−1
+

bJ−1

2
− rJ−1

λρJ

1 + ρJ

≥ − ε

hJ−1
+

β

2
+

(
ε

hJ H
+

bJ−1h̄J−1

hJ H

)
λβhJ

2ε + βhJ

= − ε

hJ−1
+

β

2
+

(
2ε + bJ−1(hJ−1 + hJ)

2hJ H

)
λβhJ

2ε + βhJ

≥ β

2
− ε

hJ−1
+

λβ

4H
≥ β

2
> δ

with a suitable positive constant λ. We can choose such λ because the estimates H ≤ 2N−1 and
q − tJ−1 ≤ q − tJ−2 ≤ 1 imply

λβ

4H
− ε

hJ−1
=

λβ

4H
− N

aq
(q − tJ−1) (q − tJ−2) ≥ N

(
λβ

8
− 1

aq

)
≥ 0.

For i = J, we get

σJ =
h̄J

H
cJvJ + lJ H − rJ H + λ

[
lJ +

dJ

1 + ρJ
+

rJ

(1 + ρJ)(1 + ρ)

]
≥ − ε

hJ
+

ε

H
+

bJ h̄J

H

+
λ

(1 + ρJ)(1 + ρ)

[
lJ(1 + ρJ)(1 + ρ) + dJ(1 + ρ) + rJ

]
≥ ε

H
− ε

hJ
+

bJ

2

+
λ

(1 + ρJ)(1 + ρ)

[
lJ(1 + ρJ)(1 + ρ) + dJ(1 + ρ) + rJ

]
≥ β

2
−

ε(H − hJ)

hJ H
≥ δ > 0.

The above estimate holds true because (4.4) implies that

ε(H − hJ)

hJ H
≤ ζ

√
ε

aq
≤ 2

a
,

when ε is sufficiently small, and because we can show that

[lJ(1 + ρJ)(1 + ρ) + dJ(1 + ρ) + rJ ] ≥ 0.
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Indeed,

lJ(1 + ρJ)(1 + ρ) + dJ(1 + ρ) + rJ = lJρJ + lJρJρ − rJρ

= − ε

hJ H
βhJ

2ε
− ε

hJ H
βhJ

2ε

βH
2ε

+

[
ε

H2 +
bJ h̄J

H2

]
βH
2ε

= −β2

4ε
+

βbJ h̄J

2Hε

= −β2

4ε
+

βbJ(hJ + H)

4Hε

≥ −β2

4ε
+

βbJ

4ε
≥ 0.

Finally, when J + 1 ≤ i ≤ N − 1, we have

σi = civi + li H − ri H +
li

1 + ρJ

[
λ

(1 + ρ)i−1−J −
λ

(1 + ρ)i−J

]
+

ri

1 + ρJ

[
λ

(1 + ρ)i+1−J −
λ

(1 + ρ)i−J

]
≥ bi +

ρ(1 + ρ)li − ρri

(1 + ρJ)(1 + ρ)i+1−J λ

≥ β

2
+

(li − ri + liρ)ρ
(1 + ρJ)(1 + ρ)i+1−J λ

=
β

2
+

(
bi

H
− β

2H

)
λρ(1 + ρ)J−i−1

1 + ρJ

≥ β

2
> δ.

By examining the elements of the matrix ÃN , we see that

∥ÃN∥ ≤ CN2.

When we combined this with Lemma 4.2, we get the following result.

Theorem 4.3. The matrix ÃN of the system (4.2) satisfies

κ(ÃN) ≤ CN2.

5 Uniform convergence and numerical experiments

Let τi, i = 1, 2, . . . , N − 1, be the consistency error of the finite-difference operator LN ,

τi = LNui − fi.

We have
τi = τi[u] := LNui − (Lu)i

and by Taylor’s expansion we get that

|τi[u]| ≤ Chi+1(ε∥u′′′∥i + ∥u′′∥i), (5.1)
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where ∥g∥i := maxxi−1≤x≤xi+1
|g(x)| for any C(I)-function g. Let us define

τ̃i[u] =


h̄i

H
τi[u], 1 ≤ i ≤ J,

τi[u], J + 1 ≤ i ≤ N − 1.

Lemma 5.1. The following estimate holds true for all i = 1, 2, . . . , N − 1:

|τ̃i[u]| ≤ CN−1.

Proof. We use the decomposition (2.1) and estimates (2.2). For the smooth part of the solution,
it is easy to show that |τ̃[s]| ≤ CN−1. Then we need to show that

|τ̃i[y]| ≤ CN−1.

Case 1. Let i ≥ J + 1, i.e. ti−1 ≥ tJ ≥ α. Then we have

|τ̃i[y]| = |τi[y]| ≤ Chi+1
(
ε∥y′′′∥i + ∥y′′∥i

)
≤ CN−1λ′(ti+1)ε

−2e−βλ(ti−1)/ε

≤ CN−1λ′(ti+1)ε
−2e−βλ(α)/ε

≤ CN−1ε−2e−aβα/(ζ
√

ε)

≤ CN−1,

where we have used the fact that ε−2e−aβα/(ζ
√

ε) ≤ C.
Case 2. Let i ≤ J, i.e. ti−1 < α, and at the same time, let ti−1 ≤ q − 3/N. Note that, when

ti−1 ≤ q − 3/N, we have

ti+1 ≤ q − 1/N < q and q − ti+1 ≥ 1
3
(q − ti−1).

This is because
q − ti−1 ≥ 3

N
⇒ 2

3
(q − ti−1) ≥

2
N

,

which gives

q − ti+1 = q − ti−1 −
2
N

=
1
3
(q − ti−1) +

2
3
(q − ti−1)−

2
N

≥ 1
3
(q − ti−1).

Therefore,

|τ̃i[y]| =
h̄i

H
|τi[y]| ≤

h̄i

H
Chi+1

(
ε∥y′′′∥i + ∥y′′∥i

)
≤ CN−1 [λ′(ti+1)

]2
ε−2e−βλ(ti−1)/ε

≤ CN−1 [ϕ′(ti+1)
]2 e−aβϕ(ti−1)

≤ Cε−1N−1(q − ti+1)
−4e−aβ(q/(q−ti−1)−1)

≤ CN−1(q − ti−1)
−4e−aβq/(q−ti−1)

≤ CN−1,

because (q − ti−1)
−4e−aβq/(q−ti−1) ≤ C.
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Case 3. In the last case, we consider the remaining possibility, q − 3/N < ti−1 < α. We use
the fact that Ly = 0 to work with

|τ̃i[y]| =
hi

H
|τi[y]| ≤

h̄i

H
(Pi + Qi + Ri) ,

where
Pi = ε|D′′yi|, Qi = bi|D′yi|, and Ri = ci|yi|.

We now follow closely the technique in [16, Lemma 5], (see also [9, 17]), to get

h̄i

H
(Pi + Qi + Ri) ≤ C

[
h̄i

H

(
1
h̄i

ε · 2∥y′∥i

)
+

h̄i

H

(
1

hi+1
∥y∥i

)
+ e−βλ(ti)/ε

]
≤ CNe−βλ(ti−1)/ε

≤ CNe−aβϕ(ti−1)

≤ CNe−aβϕ(q−3/N)

≤ CNe−aβ(qN/3−1)

≤ CN−1.

Remark 5.2. The technique used in the above proof is based on [15], where the same approach
is successfully applied to reaction-diffusion problems. This approach is originally due to
Bakhvalov [1]. The technique works here for convection-diffusion problems (1.1) because an
extra ε-factor is obtained from the preconditioner (4.1).

When Lemmas 4.2 and 5.1 are combined, which amounts to the use of the consistency-
stability principle, we obtain the following result.

Theorem 5.3. Let ε be sufficiently small, independently of N, and let a > 4/β. Then the solution UN

of the discrete problem (2.4) on the VB-mesh satisfies∥∥∥UN − uN
∥∥∥ ≤ CN−1,

where u is the solution of the continuous problem (1.1).

We conclude our paper by reporting a test problem taken from [4, page 1]:

−εu′′ − u′ = 1, x ∈ (0, 1), u(0) = u(1) = 0. (5.2)

The exact solution of this problem is known. Tables 1 and 2 present the maximum point
consistency errors without and with preconditioning, respectively, whereas Table 3 shows the
errors in the max norm and the rate of convergence calculated from the maximum errors.
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− log ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 5.94e-01 3.05e-01 1.55e-01 7.77e-02 3.90e-02 1.95e-02
2 5.94e+00 3.05e+00 1.55e+00 7.77e-01 3.90e-01 1.95e-01
3 5.94e+01 3.05e+01 1.55e+01 7.77e+00 3.90e+00 1.95e+00
4 5.94e+02 3.05e+02 1.55e+02 7.77e+01 3.90e+01 1.95e+01
5 5.94e+03 3.05e+03 1.55e+03 7.77e+02 3.90e+02 1.95e+02
6 5.94e+04 3.05e+04 1.55e+04 7.77e+03 3.90e+03 1.95e+03
7 5.94e+05 3.05e+05 1.55e+05 7.77e+04 3.90e+04 1.95e+04
8 5.94e+06 3.05e+06 1.55e+06 7.77e+05 3.90e+05 1.95e+05

Table 1: The maximum pointwise consistency error without preconditioning on the Vulanović-Bakhvalov
mesh for the problem (5.2).

− log ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 4.01e-01 2.16e-01 1.12e-01 5.70e-02 2.88e-02 1.45e-02
2 3.10e-01 1.65e-01 8.50e-02 4.32e-02 2.18e-02 1.09e-02
3 2.61e-01 1.39e-01 7.16e-02 3.64e-02 1.83e-02 9.19e-03
4 2.46e-01 1.31e-01 6.75e-02 3.43e-02 1.73e-02 8.67e-03
5 2.41e-01 1.28e-01 6.62e-02 3.36e-02 1.69e-02 8.50e-03
6 2.40e-01 1.28e-01 6.58e-02 3.34e-02 1.68e-02 8.45e-03
7 2.39e-01 1.27e-01 6.57e-02 3.33e-02 1.68e-02 8.43e-03
8 2.39e-01 1.27e-01 6.56e-02 3.33e-02 1.68e-02 8.43e-03

Table 2: The maximum pointwise consistency error with preconditioning on the Vulanović-Bakhvalov
mesh for the problem (5.2).

− log ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 4.82e-02 2.54e-02 1.31e-02 6.63e-03 3.34e-03 1.68e-03
0.92 0.96 0.98 0.99 0.99 –

2 7.43e-02 3.86e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.94 0.97 0.99 0.99 1.00 –

3 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

4 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

5 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

6 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

7 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

8 7.49e-02 3.87e-02 1.97e-02 9.93e-03 4.99e-03 2.50e-03
0.95 0.97 0.99 0.99 1.00 –

Table 3: The maximum pointwise errors and the calculated rate of convergence on the Vulanović-
Bakhvalov mesh for the problem (5.2).
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