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Abstract. An inverse source problem for the Poisson equation is looked at in this article. This is a problem
that is poorly posed because even minor changes in the data can result in arbitrarily large changes in the
results. We first demonstrate some useful lemmas about our proposed problem before presenting the main
results. Then, at that point, we propose a regularization strategy to manage the reverse source issue and
get a union rate with random noise.
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1. Introduction

Applications in science and engineering rely heavily on inverse source problems (see [1]
and [2] ). Finding the hidden source’s location, size, and shape from the boundary’s measured
data is the inverse source problem of the Poisson equation’s source term determination prob-
lem. The nonlinearity and illusory nature of this inverse source problem can be seen in the fact
that, even if a solution is found, it does not always rely on the measured data. The given data
could have small errors that result in large errors in the solution. As a result, our proposed al-
gorithms should make use of regularization methods. Numerous studies have been conducted
on the Poisson equation’s inverse source problems ( [3], [4], [5], [9], [10], [11]. Bubnov, Erokhin
and Isakov [5], [12] introduced a few hypothetical outcomes to recreate the obscure source or
impediments from over determined limit estimations of arrangements of the Poisson condi-
tion. From over determined boundary measurements of Laplace equation solutions, the in-
verse problem of locating pointwise or small size conductivity defaults in a plane domain was
solved by [4]. Hon and co. Several efficient numerical algorithms for resolving Poisson equa-
tion inverse source problems were proposed [11], [15]. In order to identify hidden obstacles,
Hanke and Rundell’s used the rational approximation method, see in [8]. Iterative algorithms
exist to obtain source parameters from boundary measurement data [9], [10], [13], [17], [18].
An inverse potential problem for reconstructing an obstacle’s shape was solved using iterative
algorithms in Hettlich and Rundell’s [10]. In this paper, assume that Ω is a simply connected

Letters on Applied and Pure Mathematics ISSN: 1234-5678

https://lapmjournal.com
https://lapmjournal.com
https://lapmjournal.com/index.php/lapm/issue/view/lapm.2023v1n1
https://lapmjournal.com
https://lapmjournal.com/index.php/lapm/article/view/lapm.2023v1n1-1
https://lapmjournal.com/
https://lapmjournal.com


A combination of filter and truncation Fourier regularized methods Doi: lapm.2023v1n1-1

bounded domain of R2 with a smooth boundary ∂Ω, we consider to find a pair of functions
(u(x, y),F (x)) satisfying

−uxx − uyy = F (x),0 < x < π, 0 < y < +∞, (1)

with boundary condition

u(0, y) = u(π, y) = 0, 0 ⩽ y < +∞, (2)

and final condition

u(x, 1) = h(x), 0 ⩽ x ⩽ π. (3)

and

u(x, 0) = 0, u(x, y)|y→∞ bounded,0 ⩽ x ⩽ π, (4)

where u(x, 1) = h(x) is the supplementary condition and F (x) is the unknown source that
is only dependent on one spatial variable. The inverse problem of identifying an unknown
source is the name given to this issue. Numerous studies have been conducted on the various
heat source types cited in the heat equation [23], [24], [25], [26], [27], [28]. We are aware of only
a few papers that attempted to identify the random noise-based unknown source in the Poisson
equation. Since we cannot anticipate that the measured data function hϵ(x) will decay at the
same rate in L2(0, π), the problem (1) is ill-posed. The ill-posed problem will be addressed
by means of the truncation regularization approach in the following section. The truncation
regularization strategies have been read up for reverse issues, with the end goal that : Eldén
can be found in [30], Xiong in [31], Fu in [32], and Qian in [33].

The model is random if the errors are brought on by unpredictability, such as wind, rain,
humidity, or other factors. The approximate representation of the final data, h, is known as
hε. The arbitrary model can’t be tackled utilizing similar procedures used for the deterministic
cases. It is regularly difficult to work out due to the irregular clamor. We have

h̃(xk) = h(xk) + εk, k = 1, · · · , n.

where εk, k = 1, · · · , n are unknown independent random errors because the function h(x) in
practical applications is the result of experimental observations and cannot be viewed without
errors. As a matter of fact, these mistakes can emerge out of many sources like the estimating
instrument or the climate. From now on, we put xk = π 2k−1

2n , with k = 1, · · · , n. We have a
data set D =

(
h̃(x1), h̃(x2), . . . , h̃(xn)

)
, which is the measure of

(
h(x1), h(x2), . . . , h(xn)

)
, here

D satisfies

h̃
(
xk
)
= h

(
xk
)
+ σkεk, (5)

where, εk, k = 1, · · · , n are unknown independent noises. Therefore, εk and σk are unknown
positive constants that are constrained by the positive constant Vmax so that 0 ≤< σk and Vmax,
respectively. The noises εk are independent of one another. There are no published results
on the inverse source problem for fractional diffusion with random noise. Our fundamental
issue in this paper is finding the source capability F from the arbitrary information h(xk), k =

1, · · · , n. For σ > 0, let Hσ(Ω) be the arrangement of all capabilities F ∈ L2(Ω) with
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∥∥F∥∥2
Hσ(Ω)

=
∞

∑
p=1

p2σ
∣∣〈F , ξp

〉∣∣2 < ∞. (6)

The outline of the paper is as follows. In Section 2, we present some preparatory knowledge.
The main result is in Section 3.

2. Preminilaries

Lemma 2.1. (See in [7]) If p ⩾ 1, we have(
1 − exp(−p)

)−1
⩽ 2. (7)

Lemma 2.2. Let p = 1, . . . , n − 1, and q = 1, 2, . . ., with xk = π
2k − 1

2n

and ξp(xk) =

√
2
π

sin(pxk), then we have

Sp,q =
1
n

n

∑
k=1

ξp(xk)ξq(xk) =


1
π

, q − p = 2ℓn or q + p = 2ℓn(ℓ even ),

− 1
π

, q − p = 2ℓn or q + p = 2ℓn(ℓ odd ),

0, otherwise.

(8)

If q = 1, 2, . . . , n − 1, then

Sp,q =


1
π

, p = q,

0, p ̸= q,
, and

1
n

n

∑
k=1

ξp(xk) =


0, p ̸= 2ℓn,

(−1)ℓ
√

2
π

, p = 2ℓn.
(9)

Lemma 2.3. (See [6]) Let p, n ∈ N such that 1 ≤ p ≤ n − 1, and h ∈ C[0, π]. Then we have〈
h, ξp

〉
=

π

n

n

∑
k=1

h(xk)ξp(xk)−
∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 )

, 1 ≤ p ≤ n − 1, (10)

Lemma 2.4. Let 0 < Mtr < n,Mtr ∈ N, assume that h is as in Lemma 2.3, then the source
function F is given by

Fn,Mtr(x) =
Mtr

∑
p=1

p2

1 − exp(−p)

(
π

n

n

∑
k=1

h(xk)ξp (xk)

−
∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 ))

ξp(x)

+
∞

∑
p=Mtr+1

p2

1 − exp(−p)
〈

h, ξp
〉
ξp(x). (11)

Proof The problem (1) has the mild solution:

u(x, y) =
∞

∑
p=1

1 − exp(−py)
p2

〈
F , ξp

〉
ξp, where

{
ξp =

√
2
π

sin px, (p = 1, 2, . . .)
}

, (12)
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and
〈
F , ξp

〉
=

√
2
π

∫ π

0
F (x) sin(px)dx. We have

h(x) =
∞

∑
p=1

〈
h, ξp

〉
ξp(x) =

∞

∑
p=1

(1 − exp(−p)
p2

)〈
F , ξp

〉
ξp(x). (13)

Therefore, we have

F (x) =
∞

∑
p=1

( p2

1 − exp(−p)

)〈
h, ξp

〉
ξp(x)

=
Mtr

∑
p=1

p2

1 − exp(−p)
〈

h, ξp
〉
ξp(x) +

∞

∑
p=Mtr+1

p2

1 − e−p

〈
h, ξp

〉
ξp(x)

=
Mtr

∑
p=1

p2

1 − exp(−p)

(
π

n

n

∑
k=1

h(xk)ξp(xk)−
∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 ))

ξp(x)

+
∞

∑
p=Mtr+1

p2

1 − exp(−p)
〈

h, ξp
〉
ξp(x). (14)

3. The main results

Theorem 3.1. Let ε > 0 and εk ∼ N(0, 1) be independent normal random variables with k = 1, · · · , n
(as mentioned above), then a regularized function F̃n,Mtr for F can be computed as follows

F̃n,Mtr(x) =
Mtr

∑
p=1

( p2

1 − exp(−p)

)π

n

n

∑
k=1

h(xk)ξp(xk)ξp(x). (15)

Mtr is regularization parameters, it gives

E
∥∥F̃n,Mtr −F

∥∥2
L2(Ω)

≤ 2
(
Mtr

)−2σE2 + 8M4
tr

(π2

n2 V
2
max +

π4

144

∥∥F∥∥2
L2(Ω)

n4

)
. (16)

Let Mtr = Mtr,n such that 0 < Mtr = Mtr,n < n and

lim
n→+∞

M4
tr

n
= 0, (17)

then

E
∥∥F̃n,Mtr −F

∥∥2
L2(Ω)

is of order
{M4

tr
n

, (Mtr)
−2σ
}

. (18)

Remark 3.1. If we choose Mtr = n
1

4+2σ , with (18), then we have

E
∥∥F̃n,Mtr −F

∥∥2
L2(Ω)

is of order n− σ
2+σ . (19)

Proof:
Using the inequality 1 − exp(−p) ≤ p, ∀p > 0, we receive∣∣〈h, ξp

〉∣∣ = (1 − exp(−p)
p2

) ∣∣〈F , ξp
〉∣∣ ≤ ∥F∥L2(Ω)

p
· (20)

Using (14) and (15), we obtain

F̃n,Mtr(x)−F (x)

4
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=
Mtr

∑
p=1

( p2

1 − exp(−p)

)(π

n

n

∑
k=1

σkεkξp(xk) +
∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 ))

ξp(x)

−
∞

∑
p=Mtr+1

( p2

1 − exp(−p)

) 〈
h, ξp

〉
ξp(x)· (21)

Applying Lemma 2.4, we have∥∥F̃n,Mtr −F
∥∥2

L2(Ω)

=
Mtr

∑
p=1

( p2

1 − exp(−p)

)2
(

π

n

n

∑
k=1

σkεkξp (xk) +
∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 ))2

+
∞

∑
p=Mtr+1

( p2

1 − exp(−p)

)2∣∣ 〈g, ξp
〉 ∣∣2· (22)

The fact that E
(
ε jε l
)
= 0; (j ̸= l), and Eε j = 0; j = 1, 2, . . . , n. One has

E
∥∥F̃n,Mtr −F

∥∥2
L2(Ω)

≤ 2
∞

∑
p=Mtr+1

( p2

1 − exp(−p)

)2∣∣〈g, ξp
〉∣∣2

︸ ︷︷ ︸
J1

+ 2
Mtr

∑
p=1

( p2

1 − exp(−p)

)2(π2

n2

n

∑
k=1

σ2
k Eϵ2

k +

( ∞

∑
ℓ=1

(−1)ℓ
( 〈

h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉 ))2

︸ ︷︷ ︸
J2

)
︸ ︷︷ ︸

J3

. (23)

We know that
∞

∑
ℓ=1

1
ℓ2 =

π2

6
, we obtain

J2 ≤
∞

∑
l=1

∣∣〈h, ξp+2ℓn
〉
+
〈

h, ξ−p+2ℓn
〉∣∣

≤

∥∥F∥∥L2(Ω)

n2

[
∞

∑
ℓ=1

1
(p + 2ℓn)2 +

∞

∑
ℓ=1

1
(−p + 2ℓn)2

]
≤ π2

12

∥∥F∥∥L2(Ω)

n2 . (24)

For p ≥ 1, 1 = p2σ p−2σ, we can rewrite J1 as follows

J 2
1 =

∞

∑
p=Mtr+1

( p2

1 − exp(−p)

)2∣∣ 〈h, ξp
〉 ∣∣2 =

∞

∑
p=Mtr+1

p2σ p−2σ
∣∣〈F , ξp

〉∣∣2, (25)

this leads to

J 2
1 ≤

(
Mtr

)−2σE2. (26)

Next, J3 can be bounded as follows

J 2
3 ≤

Mtr

∑
p=1

( p2

1 − e−p

)2(π2

n2

n

∑
k=1

σ2
k Eϵ2

k + J 2
2

)2
· (27)
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Since σk ≤ Vmax, using the Lemma 2.1, one has

J 2
2 ≤

Mtr

∑
p=1

4p4
(π2

n2 V
2
max +

π4

144

∥∥ f
∥∥2

L2(Ω)

n4

)
≤ 4M4

tr

(π2

n2 V
2
max +

π4

144

∥∥F∥∥2
L2(Ω)

n4

)
. (28)

Combining (23), (26), and (27), we obtain

E
∥∥F̃n,Mtr −F

∥∥2
L2(Ω)

≤ 2
(
Mtr

)−2σE2 + 8M4
tr

(π2

n2 V
2
max +

π4

144

∥∥F∥∥2
L2(Ω)

n4

)
. (29)

This completes the proof.
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